
GPU-Accelerated Variational Monte Carlo
B. Tasseff1, 4, N. Setty2, N. Sengupta3, Z. Yun4, S. Abu Asal2, 4, Y. Fang2, 4, S. Pathak3, J. Moreno3, 4, J. Ramanujam4, M. Jarrell3, 4

1Department of Physics, University of Northern Iowa 2Department of Electrical & Computer Engineering, Louisiana State University
3Department of Physics & Astronomy, Louisiana State University 4Center for Computation & Technology, Louisiana State University

The Big Question

How can we model and describe the behavior of strongly-correlated
electronic systems (e.g., high-temperature superconductors) in an ac-
curate, computationally-efficient manner?

The Variational Method

In quantum mechanics, the variational method is a strategy used to
find and study the ground state of a system, ΨG. The procedure is
relatively straightforward:
1 Design (“guess”) a trial ground state, Ψ(α).
2 Vary parameter α until E(α) is minimized.
3 Obtain and study ΨG.
For a strongly-correlated system, the ground state is often impossible
to determine analytically. The variational method allows us to find
numerically- and physically-accurate ground states with ease.

Variational Monte Carlo

An electronic system may be modeled as a lattice consisting of atomic
sites housing spin-up and spin-down electrons. The configuration of
electrons within the lattice implicitly defines the energy of the system.
• The Connection: For every value αi, there exists one
configuration with minimal energy, Em(αi). The value αG that
best minimizes this energy is used to obtain ΨG.

• The Problem: A 100-site lattice with 50 ↑ and 50 ↓ electrons
will have nearly 1060 possible configurations. It would be difficult
to find one configuration with minimal energy Em(α).

• The Solution: Randomly sample configurations near each
minimal energy. Average these results to predict each minimal
energy. Repeat while varying α to obtain αG, EG, and ΨG.

Figure 1: A strongly-correlated electronic system may be modeled as a latticed
configuration of interacting electrons. By randomly sampling many configurations,
we can approximate Em(α), the minimal energy for a particular parameter value.

Serial Implementation

The serial (CPU) version of the procedure builds upon concepts de-
scribed in the preceding section:
1 Begin with a random initial configuration and state Ψ(α).
2 Choose an electron at random and move it, producing Ψ′(α).

• If |Ψ′(α)|2/|Ψ(α)|2 > some randomized probability, compute and store the
energy of the configuration.

• Otherwise, keep the old configuration and repeat 2.
3 Repeat 2 and 3 until reaching an equilibrium energy Em(α).
This process is then repeated for many αi. The parameter value
which best minimizes Em is then used to build ΨG.

GPU Implementation

The serial procedure uses a single Markov process. Running such
processes many times allows us to sample and compare more config-
urations, entailing higher-precision Em(αi). This, in turn, allows for
the more accurate characterization of the ground state, ΨG.

In our research, graphics processing units (GPUs) are used to
run multiple Markov processes in parallel. The GPU implementa-
tion is intended to provide a substantial, cost-effective speedup when
compared to the serial counterpart.

Validation

After building the GPU implementation, we first ensured it worked
comparably to the CPU version. We also observed the increase in
data quality obtained when using multiple Markov processes.

Figure 2: Comparison of variational results obtained for parameter α using a single
Markov process (CPU) and 110 Markov processes (GPU).

Results

Finally, to adequately benchmark the GPU implementation, we com-
pared the speeds of CPU and GPU versions of the code.

Figure 3: Performance comparison of CPU and GPU variational Monte Carlo imple-
mentations executing multiple Markov processes.

Discussion

Upon inspection of figure 2, there is a clear increase in data quality
when executing multiple Markov processes. However, as shown in
figure 3, the current GPU code does not provide a speedup over the
CPU code. Nevertheless, the CPU code scales at a much quicker rate
than the GPU counterpart.

Conclusions and Outlook

Although we find benefit in executing multiple Markov processes, the
current GPU code does not provide improved performance over its
CPU counterpart. However, many improvements remain to be made
to the foundational GPU code; such optimization may eventually
permit a significant speedup over the serial CPU code.

References

[1] V. B. Shenoy, Variational Monte Carlo Method for Fermions, Indian
Institute of Technology, Bangalore, India, 2009.

[2] S. Pathak et al., Phys. Rev. Lett. 102 (2009), 027002.

Acknowledgements

This material is based upon work supported by the Louisiana Board of Regents
contract number LEQSF(2007-12)-ENH-PKSFI-PRS-01 with additional support
from the Center for Computation & Technology at Louisiana State University.

