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ABSTRACT 
One of the major challenges facing urban planners is the problem of how to assess risk 
associated with potential natural disasters. The challenge increases in difficulty when the 
scenarios considered by planners lack historical precedent. This is often the case for scenarios 
associated with dam failures, as these are atypical occurrences. While the scientific 
community has made tremendous strides in developing simulation models of dam failures, 
their accuracy remains dependent on the accuracy of the input parameters to the model. More 
importantly, perhaps, the results of dam failure simulations (flood characteristics) are used for 
consequence assessment such as population at risk, loss of life, and direct economic impacts. 
 
To address this concern, this paper surveys the possible input parameters to such models and 
tests the parameters on the Hydropolis dam failure scenario. The dam failure results are then 
used to calculate consequence. Interestingly, while the range of possible inputs is 
considerable, the range in consequence is much smaller. This suggests that consequence 
assessment for dam failure is surprisingly robust to error in the input parameters. Finally, this 
methodology allows planners to understand the range of possible outcomes and plan 
accordingly. 

INTRODUCTION 
Over the past 100 years or more, modern civilization has increasingly relied on a vast 
complex of dams to control the behavior of rivers and streams. These dams are used to 
generate power, reduce the risk of seasonal flooding, support agriculture, and provide clean 
drinking water. However, these dams introduce risk in the form of failure and subsequent 
downstream flooding. Thankfully, these events are rare, so planners and engineers rely on 
computational models and simulations to predict the outcome and consequence of dam 
failures. As the availability of multi-processor computing techniques has significantly 
increased over the past decade, these models have become increasingly sophisticated and 
realistic. However, the ability to benchmark and validate such tools, in particular for risk 
assessment, remains a difficult challenge. 
 
This challenge motivates Theme C of the 12th International Benchmark Workshop on 
Numerical Analysis for Dams. The numerical problem proposed for Theme C focuses on 
estimating the consequences of a dam failure near a populated area with complex 
demographics, infrastructure, and economic activity. This paper addresses Theme C by 
making the following contributions: 

• A survey of input parameters used in two-dimensional (2D) flood modeling 

• An ensemble of possible outcomes based on the survey  

• A consensus based approach for choosing input parameters in the absence of validation 
data 
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• A methodology for estimating population at risk (PAR), loss of life (LOL), and direct 
gross domestic product (GDP) impacts within the downstream inundated areas 

FLOOD INUNDATION 

Methodology and Literature Review 
Historically, flood inundation has been simulated using one-dimensional (1D) flow models 
with predefined channels [1]. Although such methods are numerically simple, data 
development for 1D model inputs can be costly and time-consuming [2]. Additionally, 1D 
models cannot simulate more complex flows because lateral diffusion is neglected [3]. Recent 
advances in computational resources have made more sophisticated models, like 2D models, 
tractable. Although 2D models are more complex to develop and implement, they allow for 
higher precision results and the simulation of more nuanced floodplains, including urban 
areas. Moreover, 2D models may utilize (with little to no preprocessing) a wide range of 
increasingly available, high-resolution topographic data [4]. 
 
Based on these observations, we used the 2D inundation model1 described by Kurganov and 
Petrova to simulate the Hydropolis dam breach [5]. Their approach numerically approximates 
the 2D shallow water equations using a central-upwind, finite-volume method to spatially 
discretize and solve the system under consideration. For the temporal discretization, we used a 
second-order total variation diminishing Runge-Kutta scheme. The code also employed wet 
cell tracking, allowing processors to avoid unnecessary computations in dry regions. We 
validated the code using a variety of scenarios described throughout the literature, including 
those described in [6], [7], [8], [9], and [10]. In each validation example, results were found to 
be of similar or of higher quality than what had been documented in the literature. 
 
A key challenge in flood modeling is parameterizing the simulation. In particular, models are 
sensitive to dam breach and roughness parameters. To account for such sensitivity, we 
produced 15 simulations of the Hydropolis dam break to estimate variances introduced by 
different selections of breach parameters and land type/roughness values. For these 
simulations, we implemented supercritical flow conditions along the four domain boundaries 
and used the supplied digital elevation model (DEM) including the dam. We modeled the dam 
breach as a point source located slightly downstream of the dam, near the location (4687.89 
m, 6778.68 m). For each simulation, we used unit flow data to produce the five required 
cross-sectional hydrographs. For each hydrograph, unit flow was integrated over each linear 
cross-section, those endpoints are defined in Table 1. We then used similarity metrics among 
the results to determine the submitted result. 

Table 1. Points defining the five required hydrograph cross-sections 

Cross Section 
ID 

Point 1 Point 2 
x (m) y (m) x (m) y (m) 

1 4,800.05 6,911.55 4,800.05 6,541.41 
2 5,913.56 7,297.84 6,026.31 6,835.74 
3 7,436.01 7,833.57 7,514.87 7,491.00 
4 9,131.61 8,102.21 9,065.07 7,375.17 
5 10876.32 7779.35 10553.47 7015.35 

                                                   
1 Implemented on a GPU using NVIDIA’s CUDA architecture 



 

Breach Parameter Assumptions 
We used the five breach parameter estimation methods provided in the scenario 
documentation and the supplied dam property descriptions to obtain the set of breach 
parameters listed in Table 2. 

Table 2. Comparison of breach parameters used to describe the Hydropolis dam failure 

Breach 
Parameter [11] [12] [13] [14] 

(erosion resistant) 
[14] 

(easily erodible) 
𝐵𝑤 (m) 4.91 61.79 49.47 146.4 146.4 
𝑡𝑓(s) 6601.62 2362.07 2046.88 5292.0 3294.0 

 
In addition to breach parameter estimations, there are a variety of methods for generating 
breach discharge hydrographs. In this study, we applied the widely used National Weather 
Service DAMBRK model [15]. This model approximates breach outflow as broad-crested 
weir flow; in units of cubic meters per second, it is described by Equation 1: 

𝑄𝑏𝑟𝑒𝑎𝑐ℎ = 𝑐𝑣𝑘𝑠�3.1𝑏𝑖(ℎ − ℎ𝑏)3 2⁄ + 2.45𝑍(ℎ − ℎ𝑏)5 2⁄ � (1) 

where cv is a velocity of approach correction, bi is the instantaneous breach bottom width, h is 
the water surface elevation upstream of the dam, hb is the elevation of the breach bottom, Z is 
the side slope of the breach, and ks is a submergence correction due to downstream tailwater 
elevation. Because the scenario did not provide information concerning downstream tailwater, 
we assumed ks to be unity. The velocity of approach correction is computed in Equation 2: 

𝑐𝑣 = 0.5521 + 0.041661
𝑄𝑖2

𝐵𝑑2(ℎ − ℎ𝑏𝑚)2(ℎ − ℎ𝑏) (2) 

where Bd is the reservoir width at the dam and hbm is the terminal breach bottom elevation. 
The results of the five breach parameters are described in Figure 1. It is important to note that 
the peak discharges, both in terms of discharge rate and timing of the peak, vary by a factor of 
3. This illustrates the need for accurate parameterization of the breach discharge.

 
Figure 1. Comparison of estimated breach discharge hydrographs using the five breach 

parameterization methodologies provided in ICOLD’s Theme C documentation 

Land Roughness Assumptions 
Roughness is an important parameter influencing surface flow patterns in inundation models 
[16], [17], but it is also one of the most variable and uncertain. While land use/land cover 
(LULC) data may allow for the automatic parameterization of a domain’s roughness, 
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variability may present itself through a multitude of systematic errors. Land types may be 
misclassified or classified differently across multiple references, local land types may differ 
substantially when compared to nationally categorized land types, and roughness may be 
measured (or calibrated) differently across references. 
 
Without historical data of previous Hydropolis inundation events, an empirically based 
calibration procedure to estimate LULC correlations with local roughness values could not be 
developed. Instead, we conducted a literature review of land type/roughness correlations, 
which revealed a wide range of possible parameters (Table 3).  

Table 3. Comparison of Manning roughness coefficients for 2001 NLCD land types, defined 
by a selection of literature; with trimmed mean roughness coefficients (i.e., the mean of 

values excluding extrema) 

NLCD 
Class Description [16] [18] [19] [20] [21] [22] [23] Trimmed 

Mean 
11 Open Water 0.037 0.020 0.03 0.020 0.0010 0.030 0.06 0.027 
21 Developed - Open 

 
0.048 0.020 0.013  0.0404 0.035 0.010 0.027 

22 Developed - Low 
 

 0.050 0.05 0.120 0.0678 0.015 0.010 0.046 
23 Developed - Med. 

 
 0.100 0.075  0.0678 0.015 0.010 0.053 

24 Developed - High 
 

0.022 0.150 0.1 0.121 0.0404 0.015 0.010 0.060 
31 Barren Land 0.026 0.090 0.03 0.040 0.0113 0.035 0.035 0.033 
41 Deciduous Forest  0.100 0.12 0.160 0.36 0.1 0.070 0.120 
42 Evergreen Forest 0.050 0.110 0.12 0.180 0.32 0.1 0.070 0.116 
43 Mixed Forest  0.100 0.12 0.170 0.40 0.1  0.123 
52 Shrub/Scrub 0.043 0.050 0.05 0.070 0.40 0.035 0.055 0.054 
71 Grassland/Herbaceous 0.022 0.034 0.03 0.035 0.368 0.035 0.050 0.037 
81 Pasture/Hay 0.045 0.033 0.04 0.033 0.325 0.035 0.040 0.039 
82 Cultivated Cropland  0.037 0.035 0.040  0.035 0.040 0.037 
90 Woody Wetlands 0.037 0.100 0.1 0.140 0.086 0.070   0.089 

 
Given the range of possible Manning coefficients, we conducted numerous simulations to 
determine the sensitivity of the output to error when selecting these values. Here, we 
computed the second maximum, second minimum, and trimmed mean roughness values for 
each 2001 NLCD classification. In principle, minimal and maximal parameters provide 
boundaries on possible outcomes, while trimmed mean parameters produce roughly “average” 
results. Second minima and maxima were used due to abnormally large and small extreme 
points. These three sets of values were combined with the breach parameters (15 total 
simulations). Future work will consider a broader set of parameter choices and develop 
statistical methods for combining results. 

Analysis of Results 
To provide a sensitivity analysis of simulation results, we ran several simulations based on a 
variety of parameters. The lack of historical data resulted in a limited set of options for the 
analysis of simulation results. We could not use historic events in similar regions as baselines 
for roughness or dam breach parameter calibration because the dam location is not provided 
in the scenario. As a result, the most defensible approach was to consider the set of possible 
outcomes based on the possible parameter settings in order to understand the range and 



 

variability of the results, but the rules of this workshop require us to submit a single result. In 
the absence of calibration data, an “average” or median result, taken as a function of 
roughness and dam breach conditions collected over a variety of locations, is generally an 
acceptable approach, so we considered a number of analytical techniques to assess consensus. 
For ease of comparison, we assigned numerical labels to each unique set of parameters used 
in the simulations and described in Table 4. 

Table 4. Labels and descriptions of parameters used in the Hydropolis simulations 

Run Label Breach Parameterization Roughness 
1 Von Thun and Gillette (1990), Erosion Resistant 

Trimmed Mean 
2 Von Thun and Gillette (1990), Easily Erodible 
3 Froehlich (2008) 
4 Froehlich (1995) 
5 MacDonald and Langridge-Monopolis (1984) 
6 Von Thun and Gillette (1990), Erosion Resistant 

Second Minimum 
7 Von Thun and Gillette (1990), Easily Erodible 
8 Froehlich (2008) 
9 Froehlich (1995) 
10 MacDonald and Langridge-Monopolis (1984) 
11 Von Thun and Gillette (1990), Erosion Resistant 

Second Maximum 
12 Von Thun and Gillette (1990), Easily Erodible 
13 Froehlich (2008) 
14 Froehlich (1995) 
15 MacDonald and Langridge-Monopolis (1984) 

 
The first comparison method was the “fit” of flooded areas among simulation results, a 
statistic presented by Bates and De Roo [24] (Equation 3): 

𝐹(2) =
𝐴𝑜𝑏𝑠 ∪ 𝐴𝑚𝑜𝑑

𝐴𝑜𝑏𝑠 ∩ 𝐴𝑚𝑜𝑑
 (3) 

where 𝐴𝑜𝑏𝑠 and 𝐴𝑚𝑜𝑑  are the total inundation areas of observed and modeled data, 
respectively. A fit value of unity implies a perfect fit, while a fit value of zero implies no fit. 
As all simulation results were modeled, this statistic was computed 152 times, labeling each 
result as “observed” and “modeled” 15 times. These analyses resulted in a matrix of 
𝐹(2) values, depicted in Figure 2a. 

                  
Figure 2. (a) Matrix of Bates and De Roo fit statistics; (b) Matrix of Nash-Sutcliffe efficiency 

coefficients, comparing simulated cross-sectional hydrographs “1” 

a b 



 

The second comparison method was the computation of Nash-Sutcliffe model efficiency 
coefficients [25], calculated upon comparing cross-sectional discharge hydrographs to one 
another. The Nash-Sutcliffe coefficient is defined by Equation 4: 

𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠𝑡 − 𝑄𝑚𝑜𝑑

𝑡 )2𝑇
𝑡=0

∑ �𝑄𝑜𝑏𝑠𝑡 − 𝑄𝑜𝑏𝑠�
2𝑇

𝑡=0

 (4) 

where 𝑄𝑜𝑏𝑠𝑡  and 𝑄𝑚𝑜𝑑𝑡  are observed and modeled discharges at time t, and 𝑄𝑜𝑏𝑠 is the mean 
observed discharge. An efficiency of 1 indicates a perfect fit of modeled to observed data, 
while efficiencies less than zero imply the observed mean provides a better predictor than the 
model. We computed this statistic 152 times for each of the five compared cross-sectional 
hydrographs, labeling each result as “observed” or “modeled.” Matrices similar to that of 
Figure 2a were generated to compare the Nash-Sutcliffe coefficients; the matrix comparing 
cross-sectional hydrographs “1” is shown pictorially in Figure 2b. Matrices describing the 
four other cross-sectional hydrographs were similar. 
 
For the third comparison method, we constructed a mean peak flood depth grid and 
subsequent comparisons with simulated peak flood depth grids. The mean peak flood depth 
grid was produced after averaging peak flood depths for each simulated cell. Simulated peak 
flood depth grids were then compared to the mean peak flood depth grid, and the root-mean-
square error (RMSE) was computed as in Equation 5: 

𝑅𝑀𝑆𝐸 = �∑ ∑ �ℎ𝑖𝑗
𝑝𝑒𝑎𝑘 − ℎ𝑖𝑗

𝑝𝑒𝑎𝑘�
2

𝑗𝑖

𝑁�𝐴 ∪ 𝐴�
 (5) 

where ℎ𝑖𝑗
𝑝𝑒𝑎𝑘 and ℎ𝑖𝑗

𝑝𝑒𝑎𝑘 are the averaged and simulated peak heights at grid cell 𝐶𝑖𝑗, 
respectively, and 𝑁�𝐴 ∪ 𝐴� is the number of cells contained by the union of the averaged and 
simulated flooded areas. Similar comparisons were also performed using peak unit discharge 
grids. The results of these analyses are summarized in Table 5. 

Table 5. Computed RMSE values, comparing averaged peak flood depth, and averaged peak 
unit discharge grids to simulated grids 

Run Label Peak Flood Depth RMSE (m) Peak Unit Discharge RMSE (m2/s) 
1 0.344097 3.463832 
2 0.238518 1.568955 
3 0.541395 5.542898 
4 0.446684 4.088387 
5 0.798121 7.353910 
6 0.603485 3.452673 
7 0.322903 2.760809 
8 0.366026 6.742362 
9 0.314924 5.237147 
10 1.003072 7.303872 
11 0.226322 3.789764 
12 0.539361 1.660771 
13 0.846326 5.028675 
14 0.763336 3.723210 
15 0.614361 7.463132 



 

Comparing the fit statistics displayed in Figure 2a showed that trimmed mean and minimum 
roughness simulation results compared favorably, while maximum roughness results were 
markedly different. We summed the fit statistics for each run, and found that Run 2 provided 
the largest amount of “fit” among the set of results. 
 
Figure 2b displays the results of comparing cross-sectional hydrographs at cross-section ID 1. 
We observed similar patterns for cross-sectional hydrographs 2 through 5, although 
coefficient values varied with distance from the breach source (a consequence of varying 
roughness). This comparison implied that discharges measured at the specified locations were 
more strongly related to breach discharge hydrographs than roughness coefficients. To 
classify parameters that provided consistently similar results, we summed the number of 
occurrences where the Nash-Sutcliffe coefficient was greater than zero. Using this measure, 
the Von Thun and Gillette (easily erodible) parameters provided the most similar results, with 
Von Thun and Gillette (erosion resistant) parameters closely trailing. Simulation Run 6 
provided the most consistent results overall. 
 
Table 5 describes simulated data deviations compared to mean data grids. Naturally, the mean 
grids produced were biased toward roughness parameters and breach hydrographs that were 
similar to one another. The values displayed in Table 5 implied that RMSE was reduced near 
trimmed mean roughness values, but also that Von Thun and Gillette (easily erodible) breach 
parameters provided the best agreement to mean grids across all three sets of roughness 
parameters. Run 11 produced the smallest peak depth RMSE, while Run 2 produced the 
smallest peak unit flow RMSE. 
 
Taking all methods of comparison into account, the best parameter choice used trimmed mean 
roughness values and Von Thun and Gillette (easily erodible) breach parameters (i.e., Run 2). 
We chose results from this simulation for submission. 

CONSEQUENCE ASSESSMENT 
A full-scale dam failure risk assessment generally includes the following four categories: 
public health and safety, economic impact, psychological impact, and governance/mission 
impact. In this study, the analyses focused on PAR, LOL, and direct GDP impacts. 

Population at Risk 
PAR is the total projected number of people occupying a permanent residence, a commercial 
building, or a recreational area within a potential flooded zone. Capturing reasonable 
approximations of the population that could be severely affected by the flood is the primary 
goal in estimating potential human impacts linked to a specific flood event. 
 
Methodology: One challenge in computing PAR is resolving spatial resolution differences 
between population data (e.g., census data) and simulated flood data. Additionally, 
disaggregating spatial population data across census tracts is another challenge often 
encountered in calculating PAR. One approach to resolving these challenges is to 
disaggregate the spatial data uniformly across all census tracts. In densely populated settings 
where census tracts cover small areas, such an approach tends to work well. However, this 
approach is less reliable in sparsely populated regions, where people cluster in communities 
and along road networks and where census tracts cover large areas, leaving most of the area in 
any tract essentially unpopulated. As Hydropolis contains many unpopulated areas, a more 
precise method is needed to obtain a better representation of where the population is located. 
There are two approaches to using remote sensing data to obtain a more accurate spatial 



 

representation of population within census tracts. One involves the use of night-time lights 
[26], and the other uses impervious surfaces [27], which cannot be penetrated by water. 
Examples include compacted clay, roads, parking lots, sidewalks, and driveways. As these 
examples suggest, impervious surfaces are often associated with urban and suburban areas. 
We used the latter approach to yield a reasonable proxy for densely populated areas.  
 
In this study, we used the supplied LULC data for impervious surfaces, and the population of 
Hydropolis was uniformly distributed over all impervious surfaces located within each census 
tract. Data on parcels, which included information on area zoning (e.g., residential, 
commercial, industrial) and building structures (e.g., number of stories, basement, and 
quality), was also provided for this study, but we did not use it for the population distribution 
adjustment. This population redistribution approach can overlook people located within tracts 
that do not contain any impervious surfaces. In the supplied census dataset, 116 tracts did not 
contain any impervious surfaces; these tracts contained about 6% of the study area population. 
A vast majority of these tracts are at an elevation higher than the dam breach, so although 
these residents are not included in the spatial analyses, the missing population is not expected 
to have any effect on the consequence analysis results. 
 
To estimate the PAR in different levels of flooding, we overlaid a spatial grid of total 
population with a peak flood depth grid (based on the impervious surface disaggregation 
approach). We used the same procedure to estimate the PAR based on different flood wave 
arrival times—the population grid is overlaid with a grid of wave arrival times, and the 
population at risk is binned into categories based on flood arrival times. 
 
Analysis of Results: Over the 15 model runs, the inundation area ranged from 64 km2 to 78 
km2, yielding a PAR range of approximately 21,000 to 28,000. Using Run 2 as the base 
scenario, results yielded a total flooded area of 69.3 km2 and a PAR of 26,520. Figure 3 
shows the spatial variability of PAR for Run 2, regardless of age, for Hydropolis. Figure 4 
shows the variability of PAR based for all simulations. 

 
Figure 3. Spatial variability of total PAR for Run 2 



 

 
Figure 4. Comparison of total PAR for all simulation runs 

Loss of Life 
Methodology: The second consequence metric considered in this study is loss of life. This 
approach is based on the methodology developed by E. Penning-Rowsell, et al., in [28], 
which considers three factors: (1) flood hazard, (2) area vulnerability, and (3) people 
vulnerability. Flood hazard ratings are derived from depth, velocity, and debris characteristics 
of the flood. The area vulnerability factor is based on the effectiveness of a flood warning 
system for an area, the speed of onset of the flood, and the land use characteristics or zoning 
of the area (e.g., residential homes, multi-story apartments, commercial/industrial properties, 
mobile homes). The people vulnerability factor is based on the degree to which people are 
exposed to the flood, and the number of infirm/disabled and senior people in the at risk 
population [29]. 
 
To estimate loss of life for the different flood wave arrival times, we generated spatial grids 
for hazard ratings, area vulnerability (i.e., flood warning, speed of onset, nature of area) and 
people vulnerability (i.e., elderly (65 years and older) and infirm/disabled/sick). Assuming a 
uniform debris field factor of 1 (i.e., possible), we calculated hazard rating grids using 
estimated flood depths and velocity spatial grids. Based on the estimated flood arrival times, 
we determined the flood warning and speed of onset grids using the values listed in Table 6. 

Table 6.  Flood warning and speed of onset raster values 

Zone Area Time Interval (seconds) Cell Value 
Flood Warning Raster 

High Risk 0 < Time <= 3600 3 
Med Risk 3600 < Time  <= 7200 2 
Low Risk Time > 7200 1 

Speed of Onset Raster 
High Risk 0 < Time <= 1800 3 
Med Risk 1800 < Time  <= 5400 2 
Low Risk Time > 5400 1 

 
Using the supplied benchmark parcel data, we computed the nature of the area spatial grid 
using a similar process. We assumed that the number of stories assigned to each structure was 
uniform, and we used this attribute and the values listed in [28] to determine each grid cell 
value. 
 

20000 22000 24000 26000 28000 30000
Run 1
Run 3
Run 5
Run 7
Run 9

Run 11
Run 13
Run 15

Total population at risk 



 

Analogous to the area vulnerability grids, the people vulnerability grids were determined 
based on the supplied benchmark census data. Census tract percentage values for the elderly 
were compared against corresponding percentage values for Hydropolis and assumed to be 
around the national average. This corresponded to a medium risk parameter selection for the 
people vulnerability grids. We used the parameter values listed in [28] to determine the grid 
cell values for the elderly and infirm/disabled/sick spatial grids. 
 
Analysis of Results: Given an estimated inundation area in the range of 64 square km to 78 
square km, the estimated total loss of life impacts range from 345 to 2084. Note that these 
range estimates were taken over all 15 simulations. Table 7 lists the total loss of life estimates 
within the indicated flood wave arrival time intervals for Run 2. 

Table 7. Loss of life estimates, per flood arrival times, for Run 2 

Flood Arrival Time (min) Loss of Life 
0–15 0 
15–30 145 
30–60 626 
60–90 232 
90–120 26 
120–180 5 

> 180 2 
Total 1036 

Direct Gross Domestic Product Impact 

Methodology: The number of affected jobs by job category is estimated using a methodology 
analogous to that used for PAR. We assume a job is affected if the employee is no longer 
earning a wage and job activity is assumed to stop if the job is located in a grid cell that has 
any level of flooding. Jobs of all categories were uniformly distributed over impervious 
surfaces within each census tract, and the affected jobs were then calculated based on the 
intersection between the jobs grid and the flood arrival time grid. 
 
We generated direct GDP per employee per day for each job category based on the 2010 
United States National Average GDP, the North American Industry Classification System 
(NAICS) codes, the U.S. Bureau of Economic Analysis, and the U.S. Bureau of Labor 
Statistics data. These numbers were used to estimate direct GDP impact from affected jobs. 
Table 8 shows these values. We estimated the direct GDP impact of the flood on Hydropolis 
by multiplying the number of affected jobs in each category by the GDP/employee/day for 
each category. We then computed a summation of these product values over all job 
categories. 
 
Infrastructure damages caused by flooding are considered insured or uninsured asset loss, 
hence, dollar estimates associated with infrastructure damages are not included in these direct 
GDP impact estimates. Additionally, infrastructure value data was not provided as part of the 
benchmark specifications, and any estimate of the value of insured or uninsured losses would 
be governed by assumptions made about the value of the infrastructure. 

Table 8. Direct GDP per employee day values by job category 



 

NAICS 
Code NAICS Field Name GDP/Employee/Day 

($) 
21 Mining jobs21 553.52 
22 Utilities jobs22 1,253.28 
23 Construction jobs23 157.25 

31-33 Manufacturing jobs3133 381.98 
42 Wholesale Trade jobs42 361.35 

44-45 Retail Trade jobs4445 136.48 
48-49 Transportation and Warehousing jobs4849 200.35 

51 Information jobs51 532.02 
52 Finance and Insurance jobs52 352.55 
53 Real Estate and Rental and Leasing jobs53 648.36 

54 Professional, Scientific, and Technical 
Services jobs54 255.98 

55 Management of Companies and Enterprises jobs55 354.50 

56 Administrative and Support and Waste 
Management and Remediation Services jobs56 110.69 

61 Educational Services jobs61 109.61 
62 Health Care and Social Assistance jobs62 159.42 
71 Arts, Entertainment, and Recreation jobs71 100.91 
72 Accommodation and Food Services jobs72 94.76 

81 Other Services (except Public 
Administration) jobs81 99.15 

92 Government jobs92 206.32 
 
Analysis of Results: Over the 15 model runs, the 24 hour direct GDP impact varied between 
$340,000 and $620,000. Table 9 presents direct GDP impact estimates within the indicated 
flood wave arrival time intervals and shows the range of results for direct economic activity at 
risk. 

Table 9. Direct GDP impact estimates, per flood arrival time. 

Flood Arrival Time (min) Direct GDP Impact ($USD/day) 
0–15 0 
15–30 86,618 
30–60 108,257 
60–90 263,295 
90–120 79,256 
120–180 18,930 

> 180 120 
Total 556,476 

CONCLUSION 
One of the biggest engineering achievements of the past century or more is the ability of 
modern society to control the flow of rivers through the use of dams. These dams reduce the 
risk of seasonal flooding, produce electric power, and provide agricultural benefits. However 
these dams introduce risk to downstream population and assets that requires evaluation. This 
paper surveys recent advances in dam failure modeling and the associated input parameters.  
These input parameters were evaluated on the Hydropolis dam failure scenario and used to 



 

calculate consequence. Interestingly, while the range of possible inputs was considerable, the 
range in consequence was much smaller. This suggests that consequence assessment for dam 
failure is surprisingly robust to error in the input parameters. However, despite these results 
there are a number of opportunities for future work. In particular, it will be important to 
improve techniques used to determine appropriate input parameters in the absence of 
calibration data. To address this challenge, we have conducted an additional 150 model runs 
and plan to use their impact results to build a statistical approximation to the simulator like 
the one described in [30] for a problem domain with similar characteristics. This 
approximation, called an emulator, allows thorough exploration of the model inputs and 
outputs. This will allow us to conduct detailed sensitivity studies and bound the set of inputs 
that give physically reasonable responses. The emulator will also be used to calibrate input 
settings when physical data are available; and we will demonstrate this capability in the 
context of the Hydropolis problem when the “real” outcome is revealed. 
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